Randić energy of specific graphs
نویسندگان
چکیده
منابع مشابه
Hermitian-Randić matrix and Hermitian-Randić energy of mixed graphs
Let M be a mixed graph and [Formula: see text] be its Hermitian-adjacency matrix. If we add a Randić weight to every edge and arc in M, then we can get a new weighted Hermitian-adjacency matrix. What are the properties of this new matrix? Motivated by this, we define the Hermitian-Randić matrix [Formula: see text] of a mixed graph M, where [Formula: see text] ([Formula: see text]) if [Formula: ...
متن کاملThe Randić index and the diameter of graphs
The Randić index R(G) of a graph G is defined as the sum of 1 √dudv over all edges uv of G, where du and dv are the degrees of vertices u and v, respectively. Let D(G) be the diameter of Gwhen G is connected. Aouchiche et al. (2007) [1] conjectured that among all connected graphs G on n vertices the path Pn achieves the minimum values for both R(G)/D(G) and R(G) − D(G). We prove this conjecture...
متن کاملAnti-forcing number of some specific graphs
Let $G=(V,E)$ be a simple connected graph. A perfect matching (or Kekul'e structure in chemical literature) of $G$ is a set of disjoint edges which covers all vertices of $G$. The anti-forcing number of $G$ is the smallest number of edges such that the remaining graph obtained by deleting these edges has a unique perfect matching and is denoted by $af(G)$. In this paper we consider some specifi...
متن کاملEnergy of Graphs, Matroids and Fibonacci Numbers
The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.
متن کاملOn net-Laplacian Energy of Signed Graphs
A signed graph is a graph where the edges are assigned either positive ornegative signs. Net degree of a signed graph is the dierence between the number ofpositive and negative edges incident with a vertex. It is said to be net-regular if all itsvertices have the same net-degree. Laplacian energy of a signed graph is defined asε(L(Σ)) =|γ_1-(2m)/n|+...+|γ_n-(2m)/n| where γ_1,...,γ_n are the ei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Computation
سال: 2015
ISSN: 0096-3003
DOI: 10.1016/j.amc.2015.07.112